Natural deduction: Double negation

If φ is true, then ¬¬φ is true
If ¬¬φ is true, then φ is true

Natural deduction: Implication elimination

• If
$$\psi$$
 and $\psi
ightarrow \phi$ are true, then ϕ is true

1.
$$\psi$$
premise2. $\psi \rightarrow \phi$ premise3. ϕ \rightarrow e 1,2

Now prove that $p, p \to q, p \to (q \to r) \vdash r$

Natural deduction: Modus tolens

$$ullet$$
 If $eg \phi$ and $\psi o \phi$ are true, then $eg \psi$ is true

1.
$$\neg \phi$$
premise2. $\psi \rightarrow \phi$ premise3. $\neg \psi$ MT 1,2

Now prove that $p \to (q \to r), p, \neg r \vdash \neg q$

Natural deduction: Implication introduction

• If under the assumption that ϕ is true, also ψ is true, then $\phi \to \psi$

Now prove that $\vdash (q \to r) \to ((\neg q \to \neg p) \to (p \to r))$ $p \land q \to r \vdash p \to (q \to r)$

Natural deduction: Or-introduction

• If ψ is true, then $\psi \lor \phi$ is true

1.
$$\phi$$
premise2. $\psi \lor \phi$ \lor i 1

Natural deduction: Or-elimination

If all of these conditions are true:

- under the assumption that $\, arphi \,$ is true, $\, \chi \,$ is true
- ullet under the assumption that $\,\psi$ is true, $\,\chi$ is true
- formula $\phi \lor \psi$ is true

then χ is true

Natural deduction: Or-elimination

Now prove that $q \to r \vdash p \lor q \to p \lor r$ $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$

Natural deduction:

Not-elimination

- If ϕ and $\neg \phi$ are true, then the formula is a contradiction
- One can conclude anything from a contradiction

Natural deduction:

Not-introduction

• If the assumption that ϕ is true leads to a contradiction, then $\neg \phi$ is true

1.	$\phi \to \neg \phi$	premise
2.	ϕ	assumption
3.	$\neg \phi$	→i 1,2
4.	\perp	¬e 2,3
5.	$\neg \phi$	¬i 2-4

Now prove that $p \to q, p \to \neg q \vdash \neg p$

Law of the excluded middle

• Try to proof
$$\ p \lor \neg p$$

Natural deduction:

Overview

- We saw rules for
 - And-introduction, and-elimination
 - Or-introduction, or-elimination
 - Not-introduction, not-elimination
 - Implication-introduction, implication-elimination
 - Double negation
 - Modus tolens

the three latter rules are actually redundant

Natural deduction: "Emulating" modus tolens

Natural deduction: "Emulating" double negation

